

CP violation in Higgs @ γγ and μμ colliders

Mayda M. Velasco

SNOWMASS – BNL: April 5, 2013

$\gamma\gamma$ Ideal To Measure CP Mixing and Violation

• Well defined CP-states, with linearly $(\lambda = 0)$ polarized γ 's $\Rightarrow (\gamma_{\parallel} \parallel \gamma_{\parallel}) \Rightarrow \text{CP-even}$ $\Rightarrow (\gamma_{\parallel} \perp \gamma_{\parallel}) \Rightarrow \text{CP-odd}$

 ζ_2 is the degree of circular polarization

 (ζ_3, ζ_1) are the degrees of linear polarization

ζ_2 is the degree of circular polarization (ζ_3, ζ_1) are the degrees of linear polarization

In s-channel production of Higgs:

$$\overline{\left|\mathcal{M}^{H_{i}}\right|^{2}} = \overline{\left|\mathcal{M}^{H_{i}}\right|_{0}^{2}} \left\{ \left[1 + \zeta_{2}\tilde{\zeta}_{2}\right] + \mathcal{A}_{1}\left[\zeta_{2} + \tilde{\zeta}_{2}\right] + \mathcal{A}_{2}\left[\zeta_{1}\tilde{\zeta}_{3} + \zeta_{3}\tilde{\zeta}_{1}\right] - \mathcal{A}_{3}\left[\zeta_{1}\tilde{\zeta}_{1} - \zeta_{3}\tilde{\zeta}_{3}\right] \right\}$$

$$== 0 \text{ if CP is conserved}$$

$$== +1 \text{ (-1) if CP is conserved for A CP-Even (CP-Odd) Higgs}$$

If $A_1 \neq 0$, $A_2 \neq 0$ and/or $|A_3| < 1$, the Higgs is a mixture of CP-Even and CP-Odd states

In bb, a $\leq 1\%$ asymmetry can be measure with 100 fb⁻¹ that is, in 1/2 years arXiv:0705.1089v2

Circularly polarized photons: better S/B than linear polarization case due to the J=2 suppression

• Well defined J = 0, 2 final states, when starting with *circularly* ($\lambda = \pm 1$) polarized γ 's

Intensity also lower for linearly polarized beams

$$(P_e \times P_c, \tilde{P}_e \times \tilde{P}_c)$$

μμ Collider

At a muon collider Higgs factory there is a particularly appealing approach. For resonance, R, production at a MUC with $\overline{\mu}(a+ib\gamma_5)\mu$ coupling to the muon,

$$\overline{\sigma}_{S}(\zeta) = \overline{\sigma}_{S}^{0} \left(1 + P_{L}^{+} P_{L}^{-} + P_{T}^{+} P_{T}^{-} \left[\frac{a^{2} - b^{2}}{a^{2} + b^{2}} \cos \zeta - \frac{2ab}{a^{2} + b^{2}} \sin \zeta \right] \right)
- \delta \equiv \tan^{-1} \frac{\overline{b}}{a^{2}} \quad \overline{\sigma}_{S}^{0} \left[1 + P_{L}^{+} P_{L}^{-} + P_{T}^{+} P_{T}^{-} \cos(2\delta + \zeta) \right] ,$$
(2)

- P_T (P_L) is the degree of transverse (longitudinal) polarization: no $P_T \Rightarrow$ sensitivity to $\overline{\sigma}_S^0 \propto a^2 + b^2$ only.
- $-\zeta=$ angle of the μ^+ transverse polarization relative to that of the μ^- as measured using the the direction of the μ^- 's momentum as the \hat{z} axis.
- Only the $\sin \zeta$ term is truly CP-violating, but $\cos \zeta$ also \Rightarrow significant sensitivity to a/b.

Ideal = isolate $\frac{a^2-b^2}{a^2+b^2}$ and $\frac{-2ab}{a^2+b^2}$ via the asymmetries (take $P_T^+=P_T^-\equiv P_T$ and $P_L^\pm=0$)

$$a = \text{CP-even}, b = \text{CP-odd}$$

CP asymmetries at μμ Collider

$$\mathcal{A}_{I} \equiv \frac{\overline{\sigma}_{S}(\zeta=0) - \overline{\sigma}_{S}(\zeta=\pi)}{\overline{\sigma}_{S}(\zeta=0) + \overline{\sigma}_{S}(\zeta=\pi)} = P_{T}^{2} \frac{a^{2} - b^{2}}{a^{2} + b^{2}} = P_{T}^{2} \cos 2\delta$$

$$\mathcal{A}_{II} \equiv \frac{\overline{\sigma}_S(\zeta = \pi/2) - \overline{\sigma}_S(\zeta = -\pi/2)}{\overline{\sigma}_S(\zeta = \pi/2) + \overline{\sigma}_S(\zeta = -\pi/2)} = -P_T^2 \frac{2ab}{a^2 + b^2} = -P_T^2 \sin 2\delta$$

A good determination (comparable to LC $\gamma\gamma$) of b and a is possible if luminosity can be upgraded from SM96 or higher proton source intensity is available.

→ Need new numbers!

$$\mathcal{A}_{CP=+} \propto ec{\epsilon}_1 \cdot ec{\epsilon}_2 \,, \quad \mathcal{A}_{CP=-} \propto (ec{\epsilon}_1 imes ec{\epsilon}_2) \cdot \hat{p}_{\mathrm{beam}}$$

Let's not forget the τ's

Techniques based on self-analyzing Higgs decays

To illustrate, consider $h \to \tau^+\tau^-$ and $\tau^\pm \to \pi^\pm \nu$ decays (JFG+Grzadkowski; also Soni and collaborators).

Imagine a general coupling $\overline{\tau}(a+ib\gamma_5)\tau$: a= CP-even, b= CP-odd.

 \Rightarrow enough constraints to determine π^{\pm} directions in τ^{\pm} rest frames.

Define θ, ϕ and $\overline{\theta}, \overline{\phi}$ as the angles of π^- and π^+ in the τ^- and τ^+ rest frames, respectively, employing the direction of τ^- in the h rest frame as the coordinate-system-defining z axis. \Rightarrow

$$dN \propto \left[(b^2 + a^2 \beta_{\tau}^2)(1 + \cos\theta \cos\overline{\theta}) + (b^2 - a^2 \beta_{\tau}^2)\sin\theta \sin\overline{\theta}\cos(\phi - \overline{\phi}) - 2ab\beta_{\tau}\sin\theta \sin\overline{\theta}\sin(\phi - \overline{\phi}) \right] d\cos\theta d\cos\overline{\theta} d\phi d\overline{\phi},$$
(3)

The idea is to use the above dependencies to isolate

$$\rho_1 \equiv \frac{2ab\beta_{\tau}}{(b^2 + a^2\beta_{\tau}^2)}, \quad \rho_2 \equiv \frac{(b^2 - a^2\beta_{\tau}^2)}{(b^2 + a^2\beta_{\tau}^2)}. \tag{4}$$

Conclusion

- Circular and Linear polarization of the γ beam in a $\gamma\gamma C$ can be manipulated by just changing the polarization of the γ_{laser}
 - Very powerful tool as we can isolate CP even and CP odd component of the Higgs
 - CP-violating asymmetries using circularly polarized beam can be measured to better than <1% within a year
- Muon Colliders also sensitive to CP asymmetries by manipulating the longitudinal and transverse polarization of the muon beam
 - Clean environment to study CP with τ 's

BACKUP

How y beams are produced

$$e^- \gamma_{laser} \rightarrow e^- \gamma$$

Linear polarization laser $P_c = 0$ Circular polarization laser $P_c = \pm 1$